
Appendix D

PROPERTIES OF

CONTINUOUS-TIME

RICCATI EQUATIONS

This appendix summarizes key properties of the Continuous-Time Differential Ric-
cati Equation (CTDRE);

dP

dt
= −AT P(t)−P(t)A + P(t)BΦ−1BT P(t) −Ψ (D.0.1)

P(tf ) = Ψf (D.0.2)

and the Continuous-Time Algebraic Riccati Equation (CTARE)

0 = −AT P−PA + PBΦ−1BT P−Ψ (D.0.3)

D.1 Solutions of the CTDRE

The following lemma gives a useful alternative expression for P(t).

Lemma D.1. The solution, P(t), to the CTDRE (D.0.1), can be expressed as

P(t) = N(t)[M(t)]−1 (D.1.1)

where M(t) ∈ R
n×n and N(t) ∈ R

n×n satisfy the following equation:

d

dt

[

M(t)
N(t)

]

=

[

A −BΦ−1BT

−Ψ −AT

] [

M(t)
N(t)

]

(D.1.2)

subject to

N(tf )[M(tf )]−1 = Ψf (D.1.3)
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Proof

We show that P(t), as defined above, satisfies the CTDRE. We first have that

dP(t)

dt
=

dN(t)

dt
[M(t)]−1 + N(t)

d[M(t)]−1

dt
(D.1.4)

The derivative of [M(t)]−1 can be computed by noting that M(t)[M(t)]−1 = I;
then

dI

dt
= 0 =

dM(t)

dt
[M(t)]−1 + M(t)

d[M(t)]−1

dt
(D.1.5)

from which we obtain

d[M(t)]−1

dt
= −[M(t)]−1 dM(t)

dt
[M(t)]−1 (D.1.6)

Thus, equation (D.1.4) can be used with (D.1.2) to yield

−
dP(t)

dt
= AT N(t)[M(t)]−1 + N(t)[M(t)]−1A + Ψ

−N(t)[M(t)]−1B[Φ]−1BT N(t)[M(t)]−1
(D.1.7)

which shows that P(t) also satisfies (D.0.1), upon using (D.1.1).

The matrix on the right-hand side of (D.1.2), namely,

H =

[

A −BΦ−1BT

−Ψ −AT

]

H ∈ R
2n×2n (D.1.8)

is called the Hamiltonian matrix associated with this problem.
Next, note that (D.0.1) can be expressed in compact form as

[

−P(t) I
]

H

[

I

P(t)

]

=
dP(t)

dt
(D.1.9)

Then, not surprisingly, solutions to the CTDRE, (D.0.1), are intimately con-
nected to the properties of the Hamiltonian matrix.

We first note that H has the following reflexive property:

H = −THT T−1 with T =

[

0 In
−In 0

]

(D.1.10)
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where In is the identity matrix in R
n×n.

Recall that a similarity transformation preserves the eigenvalues; thus, the eigen-
values of H are the same as those of −HT . On the other hand, the eigenvalues of H

and HT must be the same. Hence, the spectral set of H is the union of two sets, Λs

and Λu, such that, if λ ∈ Λs, then −λ ∈ Λu. We assume that H does not contain
any eigenvalue on the imaginary axis (note that it suffices, for this to occur, that

(A,B) be stabilizable and that the pair (A,Ψ
1

2 ) have no undetectable poles on the
stability boundary). In this case, Λs can be so formed that it contains only the
eigenvalues of H that lie in the open LHP. Then, there always exists a nonsingular
transformation V ∈ R

2n×2n such that

[V]−1HV =

[

Hs 0

0 Hu

]

(D.1.11)

where Hs and Hu are diagonal matrices with eigenvalue sets Λs and Λu, respectively.
We can use V to transform the matrices M(t) and N(t), to obtain

[

M̃(t)

Ñ(t)

]

= [V]−1

[

M(t)
N(t)

]

(D.1.12)

Thus, (D.1.2) can be expressed in the equivalent form:

d

dt

[

M̃(t)

Ñ(t)

]

=

[

Hs 0

0 Hu

] [

M̃(t)

Ñ(t)

]

(D.1.13)

If we partition V in a form consistent with the matrix equation (D.1.13), we
have that

V =

[

V11 V12

V21 V22

]

(D.1.14)

The solution to the CTDRE is then given by the following lemma.

Lemma D.2. A solution for equation (D.0.1) is given by

P(t) = P1(t)[P2(t)]−1 (D.1.15)

where

P1(t) = V21 + V22e−Hu(tf−t)Vae
Hs(tf−t) (D.1.16)

P2(t) =
[

V11 + V12e−Hu(tf−t)VaeHs(tf−t)
]−1

(D.1.17)

Va

4
= −[V22 −ΨfV12]−1[V21 −ΨfV11] = Ñ(tf )

[

M̃(tf )
]−1

(D.1.18)
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Proof

From (D.1.12), we have

M(tf ) = V11M̃(tf ) + V12Ñ(tf ) (D.1.19)

N(tf ) = V21M̃(tf ) + V22Ñ(tf )

Hence, from (D.1.3),

[

V21M̃(tf ) + V22Ñ(tf )
] [

V11M̃(tf ) + V12Ñ(tf )
]−1

= Ψf (D.1.20)

or

[

V21 + V22Ñ(tf )[M̃(tf )]−1
] [

V11 + V12Ñ(tf )[M̃(tf )]−1
]−1

= Ψf (D.1.21)

or

Ñ(tf )[M̃(tf )]−1 = − [V22ΨfV12]
−1

[V21 −ΨfV11] = Va (D.1.22)

Now, from (D.1.10),

P(t) = N(t)[M(t)]−1 (D.1.23)

=
[

V21M̃(t) + V22Ñ(t)
] [

V11M̃(t) + V12Ñ(t)
]−1

=
[

V21 + V22Ñ(t)[M̃(t)]−1
] [

V11 + V12Ñ(t)[M̃(t)]−1
]−1

and the solution to (D.1.13) is

M̃(tf ) = eHs(tf−t)M̃(t) (D.1.24)

Ñ(tf ) = eHu(tf−t)Ñ(t)

Hence,

Ñ(t)[M̃(t)]−1 = e−Hu(tf−t)Ñ(tf )[M̃(tf )]−1eHs(tf−t) (D.1.25)

Substituting (D.1.25) into (D.1.23) gives the result.
222
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D.2 Solutions of the CTARE

The Continuous Time Algebraic Riccati Equation (CTARE) has many solutions,
because it is a matrix quadratic equation. The solutions can be characterized as
follows.

Lemma D.3. Consider the following CTARE:

0 = Ψ−PBΦ−1BT P + PA + AT P (D.2.1)

(i) The CTARE can be expressed as

[

−P I
]

H

[

I

P

]

= 0 (D.2.2)

where H is defined in (D.1.8).

(ii) Let V be defined so that

V −1HV =

[

Λa 0

0 Λb

]

(D.2.3)

where Λa,Λb are any partitioning of the (generalized) eigenvalues of H such
that, if λ is equal to (Λa)i for same i, then −λ∗ = (Λb)j for some j.

Let

V =

[

V11 V12

V21 V22

]

(D.2.4)

Then P = V21V
−1

11 is a solution of the CTARE.

Proof

(i) This follows direct substitution.

(ii) The form of P ensures that

[

−P I
]

V =
[

0 ∗
]

(D.2.5)

V
−1

[

P

I

]

=

[

∗
0

]

(D.2.6)
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where * denotes a possible nonzero component.
Hence,

[

−P I
]

VΛV−1

[

P

I

]

=
[

0 ∗
]

Λ

[

∗
0

]

(D.2.7)

= 0 (D.2.8)

222

D.3 The stabilizing solution of the CTARE

We see from Section D.2 that we have as many solutions to the CTARE as there are
ways of partitioning the eigevalues of H into the groups Λa and Λb. Provided that

(A, B) is stabilizable and that (Ψ
1

2 ,A) has no unobservable modes in the imaginary
axis, then H has no eigenvalues in the imaginary axis. In this case, there exists
a unique way of partitioning the eigenvalues so that Λa contains only the stable
eigenvalues of H. We call the corresponding (unique) solution of the CTARE the
stabilizing solution and denote it by Ps

∞.
Properties of the stabilizing solution are given in the following.

Lemma D.4. (a) The stabilizing solution has the property that the closed loop A

matrix,

Acl = A−BKs
∞ (D.3.1)

where

Ks
∞ = Φ−1BT Ps

∞ (D.3.2)

has eigenvalues in the open left-half plane.

(b) If (Ψ
1

2 ,A) is detectable, then the stabilizing solution is the only nonnegative
solution of the CTARE.

(c) If (Ψ
1

2 ,A) has no unobservable modes inside the stability boundary, then the
stabilizing solution is positive definite, and conversely.

(d) If (Ψ
1

2 , A) has an unobservable mode outside the stabilizing region, then in
addition to the stabilizing solution, there exists at least one other nonnegative
solution of the CTARE. However, the stabilizing solution, Ps

∞ has the property
that

Ps
∞ −P

′

∞ ≥ 0 (D.3.3)

where P
′

∞ is any other solution of the CTARE.
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Proof

For part (a), we argue as follows:
Consider ( D.1.11) and (D.1.14). Then

H

[

V11

V21

]

=

[

V11

V21

]

Hs (D.3.4)

which implies that

H

[

I

V21V11
−1

]

= H

[

I

P∞

]

=

[

V11HsV11
−1

V21HsV11
−1

]

(D.3.5)

If we consider only the first row in (D.3.5), then, using (D.1.8), we have

V11HsV11
−1 = A−BΦ−1BT P∞ = A−BK (D.3.6)

Hence, the closed-loop poles are the eigenvalues of Hs and, by construction, these
are stable.

We leave the reader to pursue parts (b), (c), and (d) by studying the references
given at the end of Chapter 24.

222

D.4 Convergence of Solutions of the CTARE to the Stabilizing

Solution of the CTARE

Finally, we show that, under reasonable conditions, the solution of the CTDRE will
converge to the unique stabilizing solution of the CTARE. In the sequel, we will be
particularly interested in the stabilizing solution to the CTARE.

Lemma D.5. Provided that (A, B) is stabilizable and that (Ψ
1

2 ,A) has no unob-
servable poles on the imaginary axis and that Ψf > Ps

∞, then

lim
tf→∞

P(t) = Ps
∞ (D.4.1)

Proof

We observe that the eigenvalues of H can be grouped so that Λs contains only
eigenvalues that lie in the left-half plane. We then have that

lim
tf→∞

eHs(tf−t) = 0 and lim
tf→∞

e−Hu(tf−t) = 0 (D.4.2)

given that Hs and −Hu are matrices with eigenvalues strictly inside the LHP.
The result then follows from (D.1.16) to (D.1.17).
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Remark D.1. Actually, provided that (Ψ
1

2 , A) is detectable, then it suffices to have
Ψf ≥ 0 in Lemma D.5

222

D.5 Duality between Linear Quadratic Regulator and Optimal

Linear Filter

The close connections between the optimal filter and the LQR problem can be
expressed directly as follows: We consider the problem of estimating a particular
linear combination of the states, namely,

z(t) = fT x(t) (D.5.1)

(The final solution will turn out to be independent of f , and thus will hold for
the complete state vector.)

Now we will estimate z(t) by using a linear filter of the following form:

ẑ(t) =

∫ t

0

h(t− τ)T y′(τ)dτ + gT x̂o (D.5.2)

where h(t) is the impulse response of the filter and where x̂o is a given estimate
of the initial state. Indeed, we will assume that (22.10.17) holds, that is, that the
initial state x(0) satisfies

E(x(0) − x̂o)(x(0) − x̂o)
T = Po (D.5.3)

We will be interested in designing the filter impulse response, h(τ), so that ẑ(t)
is close to z(t) in some sense. (Indeed, the precise sense we will use is a quadratic
form.) From (D.5.1) and (D.5.2), we see that

z̃(t) = z(t)− ẑ(t)

= fT x(t)−

∫ t

0

h(t− τ)T y′(τ)dτ − gT x̂o

= fT x(t)−

∫ t

0

h(t− τ)T
(

Cx(τ) + v̇(t)
)

dτ − gT x̂o

(D.5.4)

Equation (D.5.4) is somewhat difficult to deal with, because of the cross-product
between h(t− τ) and x(t) in the integral. Hence, we introduce another variable, λ,
by using the following equation

dλ(τ)

dτ
= −AT λ(τ) −CT u(τ) (D.5.5)

λ(t) = −f (D.5.6)
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where u(τ) is the reverse time form of h:

u(τ) = h(t− τ) (D.5.7)

Substituting (D.5.5) into (D.5.4) gives

z̃(t) =fT x(t) +

∫ t

0

[

dλ(τ)

dτ
+ AT λ(τ)

]T

x(τ)dτ

−

∫ t

0

u(τ)v̇(τ)dτ − gT x̂o

(D.5.8)

Using integration by parts, we then obtain

z̃(t) =fT x(t) +
[

λT x(τ)
]t

0
− gT x̂o

+

∫ t

0

(

−λ(τ)T dx(τ)

dτ
+ λ(τ)T Ax(τ) − u(τ)T dv(τ)

dτ

)

dτ
(D.5.9)

Finally, using (22.10.5) and (D.5.6), we obtain

z̃(t) = λ(0)T (x(0)− x̂o) +

∫ t

0

(

−λ(τ)T dw(τ)

dτ
− u(τ)T dv(τ)

dτ

)

dτ

− (λ(0) + g)T x̂o

(D.5.10)

Hence, squaring and taking mathematical expectations, we obtain (upon using
(D.5.3), (22.10.3), and (22.10.4) ) the following:

E{z̃(t)2} = λ(0)T Poλ(0) +

∫ t

0

(

λ(τ)T Qλ(τ) + u(τ)T Ru(τ)
)

dτ

+ ‖ (λ(0) + g)T x̂o ‖
2

(D.5.11)

The last term in (D.5.11) is zero if g = −λ(0). Thus, we see that the design of
the optimal linear filter can be achieved by minimizing

J = λ(0)T Poλ(0) +

∫ t

0

(

λ(τ)T Qλ(τ) + u(τ)T Ru(τ)
)

dτ (D.5.12)

where λ(τ) satisfies the reverse-time equations (D.5.5) and (D.5.6).
We recognize the set of equations formed by (D.5.5), (D.5.6), and (D.5.12) as

a standard linear regulator problem, provided that the connections shown in
Table D.1 are made.

Finally, by using the (dual) optimal control results presented earlier, we see that
the optimal filter is given by
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Regulator Filter Regulator Filter

τ t− τ tf 0

A −AT Ψ Q

B −CT Φ R

x λ Ψf Po

Table D.1. Duality in quadratic regulators and filters

ẑo(τ) =

∫ t

o

uo(τ)T y′(τ)dτ + gT x̂o (D.5.13)

where

uo(τ) = −Kf (τ)λ(τ) (D.5.14)

Kf (τ) = R−1CΣ(τ) (D.5.15)

and Σ(τ) satisfies the dual form of (D.0.1), (22.4.18):

−
dΣ(t)

dt
= Q−Σ(t)CT R−1CΣ(t) + Σ(t)AT + AΣ(t) (D.5.16)

Σ(0) = Po (D.5.17)

Substituting (D.5.14) into (D.5.5), (D.5.6) we see that

dλ(τ)

dτ
= −AT λ(τ) + CT Kf (τ)λ(τ) (D.5.18)

λ(t) = −f (D.5.19)

uo(τ) = −Kf (τ)λ(τ) (D.5.20)

g = −λ(0) (D.5.21)

We see that uo(τ) is the output of a linear homogeneous equation. Let ν = (t−τ),
and define Φ(ν) as the state transition matrix from τ = 0 for the time-varying
system having A−matrix equal to

[

A−Kf (t− ν)T C
]

. Then
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λ(τ) = −Φ(t− τ)T f (D.5.22)

λ(0) = −Φ(t)T f

u0(τ) = Kf (τ)Φ(t− τ)T f

Hence, the optimal filter satisfies

ẑ(t) = gT x̂o +

t
∫

0

uoy′(τ)dτ (D.5.23)

= −λ(0)T x̂o +

t
∫

0

fT Φ(t− τ)Kf
T (τ)y′(τ)dτ

= fT



Φ(t)x̂o +

t
∫

0

Φ(t− τ)Kf
T (τ)y′(τ)dτ





= fT x̂(t)

where

x̂(t) = Φ(t)x̂o +

t
∫

0

Φ(t− τ)Kf
T (τ)y′(τ)dτ (D.5.24)

We then observe that (D.5.24) is actually the solution of the following state
space (optimal filter).

dx̂(t)

dt
=

(

A−Kf
T (t)C

)

x̂(t) + Kf
T (t)y′(t) (D.5.25)

x̂(0) = x̂o (D.5.26)

ẑ(t) = fT x(t) (D.5.27)

We see that the final solution depends on f only through (D.5.27). Thus, as
predicted, (D.5.25), (D.5.26) can be used to generate an optimal estimate of any
linear combination of states.

Of course, the optimal filter (D.5.25) is identical to that given in (22.10.23)
All of the properties of the optimal filter follow by analogy from the (dual)

optimal linear regulator. In particular, we observe that (D.5.16) and (D.5.17) are a
CTDRE and its boundary condition, respectively. The only difference is that, in the
optimal-filter case, this equation has to be solved forward in time. Also, (D.5.16)
has an associated CTARE, given by
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Q−Σ∞CT R−1CΣ∞ + Σ∞AT + AΣ∞ = 0 (D.5.28)

Thus, the existence, uniqueness, and properties of stabilizing solutions for (D.5.16)
and (D.5.28) satisfy the same conditions as the corresponding Riccati equations for
the optimal regulator.


