
Appendix C

RESULTS FROM ANALYTIC

FUNCTION THEORY

C.1 Introduction

This appendix summarizes key results from analytic function theory leading to the
Cauchy Integral formula and its consequence, the Poisson–Jensen formula.

C.2 Independence of Path

Consider functions of two independent variables, x and y. (The reader can think of
x as the real axis and y as the imaginary axis.)

Let P (x, y) and Q(x, y) be two functions of x and y, continuous in some domain
D. Say we have a curve C in D, described by the parametric equations

x = f1(t), y = f2(t) (C.2.1)

We can then define the following line integrals along the path C from point A

to point B inside D.

∫ B

A

P (x, y)dx =

∫ t2

t1

P (f1(t), f2(t))
df1(t)

dt
dt (C.2.2)

∫ B

A

Q(x, y)dy =

∫ t2

t1

Q(f1(t), f2(t))
df2(t)

dt
dt (C.2.3)

Definition C.1. The line integral
∫

Pdx+Qdy is said to be independent of the
path in D if, for every pair of points A and B in D, the value of the integral is
independent of the path followed from A to B.
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We then have the following result.
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Theorem C.1. If
∫

Pdx + Qdy is independent of the path in D, then there exists
a function F (x, y) in D such that

∂F

∂x
= P (x, y);

∂F

∂y
= Q(x, y) (C.2.4)

hold throughout D. Conversely, if a function F (x, y) can be found such that (C.2.4)
hold, then

∫

Pdx + Qdy is independent of the path.

Proof

Suppose that the integral is independent of the path in D. Then, choose a point
(x0, y0) in D and let F (x, y) be defined as follows

F (x, y) =

∫ x,y

x0,y0

Pdx + Qdy (C.2.5)

where the integral is taken on an arbitrary path in D joining (x0, y0) and (x, y).
Because the integral is independent of the path, the integral does indeed depend
only on (x, y) and defines the function F (x, y). It remains to establish (C.2.4).

(x0, y0)

(x, y)(x1, y)

Figure C.1. Integration path

For a particular (x, y) in D, choose (x1, y) so that x1 6= x and so that the
line segment from (x1, y) to (x, y) in D is as shown in Figure C.1. Because of
independence of the path,

F (x, y) =

∫ x1,y

x0,y0

(Pdx + Qdy) +

∫ x,y

x1,y

(Pdx + Qdy) (C.2.6)

We think of x1 and y as being fixed while (x, y) may vary along the horizontal
line segment. Thus F (x, y) is being considered as function of x. The first integral
on the right-hand side of (C.2.6) is then independent of x.

Hence, for fixed y, we can write



Section C.2. Independence of Path 903

F (x, y) = constant +

∫ x

x1

P (x, y)dx (C.2.7)

The fundamental theorem of Calculus now gives

∂F

∂x
= P (x, y) (C.2.8)

A similar argument shows that

∂F

∂y
= Q(x, y) (C.2.9)

Conversely, let (C.2.4) hold for some F . Then, with t as a parameter,

F (x, y) =

∫ x2,y2

x1,y1

Pdx + Qdy =

∫ t2

t1

(

∂F

∂x

dx

dt
+

∂F

∂y

dy

dt

)

dt (C.2.10)

=

∫ t2

t1

∂F

∂t
dt (C.2.11)

= F (x2, y2)− F (x1, y1) (C.2.12)

222

Theorem C.2. If the integral
∫

Pdx + Qdy is independent of the path in D, then

∮

Pdx + Qdy = 0 (C.2.13)

on every closed path in D. Conversely if (C.2.13 ) holds for every simple closed
path in D, then

∫

Pdx + Qdy is independent of the path in D.

Proof

Suppose that the integral is independent of the path. Let C be a simple closed path
in D, and divide C into arcs ~AB and ~BA as in Figure C.2.

∮

C

(Pdx + Qdy) =

∫

AB

Pdx + Qdy +

∫

BA

Pdx + Qdy (C.2.14)

=

∫

AB

Pdx + Qdy −

∫

AB

Pdx + Qdy (C.2.15)

The converse result is established by reversing the above argument.
222
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B~AB

C
A

~BA

Figure C.2. Integration path

Theorem C.3. If P (x, y) and Q(x, y) have continuous partial derivatives in D and
∫

Pdx + Qdy is independent of the path in D, then

∂P

∂y
=

∂Q

∂x
in D (C.2.16)

Proof

By Theorem C.1, there exists a function F such that (C.2.4) holds. Equation
(C.2.16) follows by partial differentiation.

222

Actually, we will be particularly interested in the converse to Theorem C.3.
However, this holds under slightly more restrictive assumptions, namely a simply
connected domain.

C.3 Simply Connected Domains

Roughly speaking, a domain D is simply connected if it has no holes. More precisely,
D is simply connected if, for every simple closed curve C in D, the region R enclosed
by C lies wholly in D. For simply connected domains we have the following:

Theorem C.4 (Green’s theorem). Let D be a simply connected domain, and
let C be a piecewise-smooth simple closed curve in D. Let P (x, y) and Q(x, y) be
functions that are continuous and that have continuous first partial derivatives in
D. Then

∮

(Pdx + Qdy) =

∫ ∫

R

(

∂Q

∂x
−

∂P

∂y

)

dxdy (C.3.1)

where R is the region bounded by C.
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Proof

We first consider a simple case in which R is representable in both of the forms:

f1(x) ≤ f2(x) for a ≤ x ≤ b (C.3.2)

g1(y) ≤ g2(y) for c ≤ y ≤ d (C.3.3)

Then

∫ ∫

R

∂P

∂y
dxdy =

∫ b

a

∫ f2(x)

f1(x)

∂P

∂y
dxdy (C.3.4)

One can now integrate to achieve

∫ ∫

R

∂P

∂y
dxdy =

∫ b

a

[P (x, f2(x)) − P (x, f1(x))]dx (C.3.5)

=

∫ b

a

P (x, f2(x))dx −

∫ b

a

P (x, f1(x))dx (C.3.6)

=

∮

C

P (x, y)dx (C.3.7)

By a similar argument,

∫ ∫

R

∂Q

∂x
dxdy =

∮

C

Q(x, y)dy (C.3.8)

For more complex regions, we decompose into simple regions as above. The
result then follows.

222

We then have the following converse to Theorem C.3.

Theorem C.5. Let P (x, y) and Q(x, y) have continuous derivatives in D and let
D be simply connected. If ∂P

∂y
= ∂Q

∂x
, then

∮

Pdx + Qdy is independent of path in
D.

Proof

Suppose that

∂P

∂y
=

∂Q

∂x
in D (C.3.9)

Then, by Green’s Theorem (Theorem C.4),
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∮

c

Pdx + Qdy =

∫ ∫

R

(

∂Q

∂x
−

∂P

∂y

)

dxdy = 0 (C.3.10)

222

C.4 Functions of a Complex Variable

In the sequel, we will let z = x + jy denote a complex variable. Note that z is
not the argument in the Z-transform, as used at other points in the book. Also,
a function f(z) of a complex variable is equivalent to a function f̄(x, y). This will
have real and imaginary parts u(x, y) and v(x, y) respectively.

We can thus write

f(z) = u(x, y) + jv(x, y) (C.4.1)

Note that we also have

∫

C

f(z)dz =

∫

C

(u(x, y) + jv(x, y))(dx + jdy)

=

∫

C

u(x, y)dx−

∫

C

v(x, y)dy + j

{
∫

C

u(x, y)dy +

∫

C

v(x, y)dx

}

We then see that the previous results are immediately applicable to the real and
imaginary parts of integrals of this type.

C.5 Derivatives and Differentials

Let w = f(z) be a given complex function of the complex variable z. Then w is
said to have a derivative at z0 if

lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
(C.5.1)

exists and is independent of the direction of ∆z. We denote this limit, when it
exists, by f ′(z0).

C.6 Analytic Functions

Definition C.2. A function f(z) is said to be analytic in a domain D if f has a
continuous derivative in D.

222
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Theorem C.6. If w = f(z) = u+jv is analytic in D, then u and v have continuous
partial derivatives satisfying the Cauchy-Riemman conditions.

∂u

∂x
=

∂v

∂y
;

∂u

∂y
= −

∂v

∂x
(C.6.1)

Furthermore

∂w

∂z
=

∂u

∂x
+ j

∂v

∂x
=

∂v

∂y
+ j

∂v

∂x
=

∂u

∂x
− j

∂u

∂y
=

∂v

∂y
− j

∂u

∂y
(C.6.2)

Proof

Let z0 be a fixed point in D and let ∆ω = f(z0+∆z)−f(z0). Because f is analytic,
we have

∆ω = γ∆z + ε∆z; γ
4
= f ′(z0) (C.6.3)

where γ = a + jb and ε goes to zero as |z0| goes to zero. Then

∆u + j∆v = (a + jb)(∆x + j∆y) + (ε1 + jε2)(∆x + j∆y) (C.6.4)

So

∆u = a∆x− b∆y + ε1∆x− ε2∆y (C.6.5)

∆v = b∆x + a∆y + ε2∆x + ε1∆y (C.6.6)

Thus, in the limit, we can write

du = adx− bdy; dv = bdx− ady (C.6.7)

or

∂u

∂x
= a = −

∂v

∂y
;

∂u

∂y
= −b = −

∂v

∂x
(C.6.8)

222

Actually, most functions that we will encounter will be analytic, provided the
derivative exists. We illustrate this with some examples.

Example C.1. Consider the function f(z) = z2. Then

f(z) = (x + jy)2 = x2 − y2 + j(2xy) = u + jv (C.6.9)
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The partial derivatives are

∂u

∂x
= 2x;

∂v

∂x
= 2y;

∂u

∂y
= −2y;

∂v

∂y
= 2x (C.6.10)

Hence, the function is clearly analytic.

Example C.2. Consider f(z) = |z| .

This function is not analytic, because d|z| is a real quantity and, hence, d|z|
dz

will
depend on the direction of z.

Example C.3. Consider a rational function of the form:

W (z) = K
(z − β1)(z − β2) · · · (z − βm)

(z − α1)(z − α2) · · · (z − αn)
=

N(z)

D(z)
(C.6.11)

∂W

∂z
=

1

D2(z)

[

D(z)
∂N(z)

∂z
−N(z)

∂D(z)

∂z

]

(C.6.12)

These derivatives clearly exist, save when D = 0, that is at the poles of W (z).

Example C.4. Consider the same function W (z) defined in (C.6.11). Then

∂ ln(W )

∂z
=

1

N(z)D(z)

[

D(z)
∂N(z)

∂z
−N(z)

∂D(z)

∂z

]

=
1

N(z)

∂N(z)

∂z
−

1

D(z)

∂D(z)

∂z

(C.6.13)

Hence, ln(W (z)) is analytic, save at the poles and zeros of W (z).

C.7 Integrals Revisited

Theorem C.7 (Cauchy Integral Theorem). If f(z) is analytic in some simply
connected domain D, then

∫

f(z)dz is independent of path in D and

∮

C

f(z)dz = 0 (C.7.1)

where C is a simple closed path in D.

Proof

This follows from the Cauchy–Riemann conditions together with Theorem C.2.
222
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We are also interested in the value of integrals in various limiting situations.
The following examples cover relevant cases.

We note that if LC is the length of a simple curve C, then

∣

∣

∣

∣

∫

C

f(z)dz

∣

∣

∣

∣

≤ max
z∈C

(|f(z)|)LC (C.7.2)

Example C.5. Assume that C is a semicircle centered at the origin and having
radius R. The path length is then LC = πR. Hence,

• if f(z) varies as z−2, then |f(z)| on C must vary as R−2 – hence, the integral
on C vanishes for R →∞.

• if f(z) varies as z−1, then |f(z)| on C must vary as R−1 – then, the integral
on C becomes a constant as R →∞.

Example C.6. Consider the function f(z) = ln(z) and an arc of a circle, C,
described by z = εejγ for γ ∈ [−γ1, γ1]. Then

Iε
4
= lim

ε→0

∫

C

f(z)dz = 0 (C.7.3)

This is proven as follows. On C, we have that f(z) = ln(ε). Then

Iε = lim
ε→0

[(γ2 − γ1)ε ln(ε)] (C.7.4)

We then use the fact that lim|x|→0(x ln x) = 0, and the result follows.

Example C.7. Consider the function

f(z) = ln
(

1 +
a

zn

)

n ≥ 1 (C.7.5)

and a semicircle, C, defined by z = Rejγ for γ ∈
[

−π
2 , π

2

]

. Then, if C is followed
clockwise,

IR
4
= lim

R→∞

∫

C

f(z)dz =

{

0 for n > 1

−jπa for n = 1
(C.7.6)

This is proven as follows.
On C, we have that z = Rejγ; then

IR = lim
R→∞

j

∫ −π
2

π
2

ln
(

1 +
a

Rn
e−jnγ

)

Rejγdγ (C.7.7)
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We also know that

lim
|x|→0

ln(1 + x) = x (C.7.8)

Then

IR = lim
R→∞

a

Rn−1
j

∫ −π
2

π
2

e−j(n−1)γdγ (C.7.9)

From this, by evaluation for n = 1 and for n > 1, the result follows.

222

Example C.8. Consider the function

f(z) = ln
(

1 + e−zτ a

zn

)

n ≥ 1; τ > 0 (C.7.10)

and a semicircle, C, defined by z = Rejγ for γ ∈
[

−π
2 , π

2

]

. Then, for clockwise C,

IR
4
= lim

R→∞

∫

C

f(z)dz = 0 (C.7.11)

This is proven as follows.
On C, we have that z = Rejγ; then

IR = lim
R→∞

j

∫ −π
2

π
2

[

ln

(

1 +
a

z(n + 1)

z

ezτ

)

z

]

z=Rejγ

dγ (C.7.12)

We recall that, if τ is a positive real number and <{z} > 0, then

lim
|z|→∞

z

ezτ
= 0 (C.7.13)

Moreover, for very large R, we have that

ln
(

1 +
a

zn+1

z

ezτ

)

z
∣

∣

∣

z=Rejγ
≈

1

zn

z

ezτ

∣

∣

∣

∣

z=Rejγ

(C.7.14)

Thus, in the limit, this quantity goes to zero for all positive n. The result then
follows.
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Example C.9. Consider the function

f(z) = ln

(

z − a

z + a

)

(C.7.15)

and a semicircle, C, defined by z = Rejγ for γ ∈
[

−π
2 , π

2

]

. Then, for clockwise C,

IR
4
= lim

R→∞

∫

C

f(z)dz = j2πa (C.7.16)

This result is obtained by noting that

ln

(

z − a

z + a

)

= ln

(

1− a
z

1 + a
z

)

= ln
(

1−
a

z

)

− ln
(

1 +
a

z

)

(C.7.17)

and then applying the result in example C.7.

222

Example C.10. Consider a function of the form

f(z) =
a−1

z
+

a−2

z2
+ . . . (C.7.18)

and C, an arc of circle z = Rejθ for θ ∈ [θ1, θ2]. Thus, dz = jzdθ, and

∫

C

dz

z
=

∫ θ2

θ1

jdθ = −j(θ2 − θ1) (C.7.19)

Thus, as R →∞, we have that

∫

C

f(z)dz = −ja−1(θ2 − θ1) (C.7.20)

222

Example C.11. Consider, now, f(z) = zn. If the path C is a full circle, centered
at the origin and of radius R, then

∮

C

zndz =

∫ π

−π

(

Rnejnθ
)

jRejθdθ (C.7.21)

=

{

0 for n 6= −1

−2πj for n = −1 (integration clockwise)
(C.7.22)
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We can now develop Cauchy’s Integral Formula.
Say that f(z) can be expanded as

f(z) =
a−1

z − z0
+ a0 + a1(z − z0) + a2(z − z0)

2 + . . . (C.7.23)

the a−1 is called the residue of f(z) at z0.

ε
z0

C

C1

C2

Figure C.3. Path for integration of a function having a singularity

Consider the path shown in Figure C.3. Because f(z) is analytic in a region
containing C, we have that the integral around the complete path shown in Figure
C.3 is zero. The integrals along C1 and C2 cancel. The anticlockwise circular
integral around z0 can be computed by following example C.11 to yield 2πja−1.
Hence, the integral around the outer curve C is minus the integral around the circle
of radius ε. Thus,

∮

C

f(z)dz = −2πja−1 (C.7.24)

This leads to the following result.

Theorem C.8 (Cauchy’s Integral Formula). Let g(z) be analytic in a region.

Let q be a point inside the region. Then g(z)
z−q

has residue g(q) at z = q, and the
integral around any closed contour C enclosing q in a clockwise direction is given
by

∮

C

g(z)

z − q
dz = −2πjg(q) (C.7.25)
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We note that the residue of g(z) at an interior point, z = q, of a region D can

be obtained by integrating g(z)
z−q

on the boundary of D. Hence, we can determine
the value of an analytic function inside a region by its behaviour on the boundary.

C.8 Poisson and Jensen Integral Formulas

We will next apply the Cauchy Integral formula to develop two related results.
The first result deals with functions that are analytic in the right-half plane

(RHP). This is relevant to sensitivity functions in continuous-time systems, where
Laplace transforms are used.

The second result deals with functions that are analytic outside the unit disk.
This will be a preliminary step to analyzing sensitivity functions in discrete time,
on the basis of Z-transforms.

C.8.1 Poisson’s Integral for the Half-Plane

Theorem C.9. Consider a contour C bounding a region D. C is a clockwise con-
tour composed by the imaginary axis and a semicircle to the right, centered at the
origin and having radius R → ∞. This contour is shown in Figure C.4. Consider
some z0 = x0 + jy0 with x0 > 0.

Let f(z) be a real function of z, analytic inside D and of at least the order of
z−1; f(z) satisfies

lim
|z|→∞

|z||f(z)| = β 0 ≤ β < ∞ z ∈ D (C.8.1)

then

f(z0) = −
1

2π

∫ ∞

−∞

f(jω)

jω − z0
dω (C.8.2)

Moreover, if (C.8.1) is replaced by the weaker condition

lim
|z|→∞

|f(z)|

|z|
= 0 z ∈ D (C.8.3)

then

f(z0) =
1

π

∫ ∞

−∞

f(jω)
x0

x2
0 + (y0 − ω)2

dω (C.8.4)
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C
∞

R
Ci

C = Ci ∪ C
∞

Figure C.4. RHP encircling contour

Proof

Applying Theorem C.8, we have

f(z0) = −
1

2πj

∮

C

f(z)

z − z0
dz = −

1

2πj

∫

Ci

f(z)

z − z0
dz −

1

2πj

∫

C∞

f(z)

z − z0
dz (C.8.5)

Now, if f(z) satisfies (C.8.1), it behaves like z−1 for large |z|, i.e., f(z)
z−z0

is like

z−2. The integral along C∞ then vanishes and the result (C.8.2) follows.
To prove (C.8.4) when f(z) satisfies (C.8.3), we first consider z1, the image of

z0 through the imaginary axis, i.e., z1 = −x0 + jy0. Then f(z)
z−z1

is analytic inside
D, and, on applying Theorem C.7, we have that

0 = −
1

2πj

∮

C

f(z)

z − z1
dz (C.8.6)

By combining equations (C.8.5) and (C.8.6), we obtain

f(z0) = −
1

2jπ

∮

C

(

f(z)

z − z0
−

f(z)

z − z1

)

dz = −
1

2jπ

∮

C

f(z)
z0 − z1

(z − z0)(z − z1)
dz

(C.8.7)
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Because C = Ci ∪C∞, the integral over C can be decomposed into the integral
along the imaginary axis , Ci, and the integral along the semicircle of infinite radius,
C∞. Because f(z) satisfies (C.8.3), this second integral vanishes, because the factor

z0−z1

(z−z0)(z−z1)
is of order z−2 at ∞.

Then

f(z0) = −
1

2π

∫ ∞

−∞

f(jω)
z0 − z1

(jω − z0)(jω − z1)
dω (C.8.8)

The result follows upon replacing z0 and z1 by their real; and imaginary-part
decompositions.

222

Remark C.1. One of the functions that satisfies (C.8.3) but does not satisfy (C.8.1)
is f(z) = ln g(z), where g(z) is a rational function of relative degree nr 6= 0. We
notice that, in this case,

lim
|z|→∞

[

| ln g(z)|

|z|

]

= lim
R→∞

|K||nr ln R + jnrθ|

R
= 0 (C.8.9)

where K is a finite constant and θ is an angle in [−π
2 , π

2 ].

Remark C.2. Equation (C.8.4) equates two complex quantities. Thus, it also ap-
plies independently to their real and imaginary parts. In particular,

<{f(z0)} =
1

π

∫ ∞

−∞

<{f(jω)}
x0

x2
0 + (y0 − ω)2

dω (C.8.10)

This observation is relevant to many interesting cases. For instance, when f(z)
is as in remark C.1,

<{f(z)} = ln |g(z)| (C.8.11)

For this particular case, and assuming that g(z) is a real function of z, and that
y0 = 0, we have that (C.8.10) becomes

ln |g(z0)| =
1

π

∫ ∞

0

ln |g(jω)|
2x0

x2
0 + (y0 − ω)2

dω (C.8.12)

where we have used the conjugate symmetry of g(z).
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C.8.2 Poisson–Jensen Formula for the Half-Plane

Lemma C.1. Consider a function g(z) having the following properties

(i) g(z) is analytic on the closed RHP;

(ii) g(z) does not vanish on the imaginary axis;

(iii) g(z) has zeros in the open RHP, located at a1, a2, . . . , an;

(iv) g(z) satisfies lim|z|→∞
| ln g(z)|
|z| = 0.

Consider also a point z0 = x0 + jy0 such that x0 > 0; then

ln |g(z0)| =

n
∑

i=1

ln

∣

∣

∣

∣

z0 − ai

z0 + a∗i

∣

∣

∣

∣

+
1

π

∫ ∞

−∞

x0

x2
0 + (ω − y0)2

ln |g(jω)|)dω (C.8.13)

Proof

Let

g̃(z)
4
= g(z)

n
∏

i=1

z + a∗i
z − ai

(C.8.14)

Then, ln g̃(z) is analytic within the closed unit disk. If we now apply Theorem
C.9 to ln g̃(z), we obtain

ln g̃(z0) = ln g(z0) +

n
∑

i=1

ln

(

z0 + a∗i
z0 − ai

)

=
1

π

∫ ∞

−∞

x0

x2
0 + (ω − y0)2

ln g̃(jω)dω

(C.8.15)

We also recall that, if x is any complex number, then <{ln x} = <{ln |x|+j∠x} =
ln |x|. Thus, the result follows upon equating real parts in the equation above and
noting that

ln |g̃(jω)| = ln |g(jω)| (C.8.16)

222

C.8.3 Poisson’s Integral for the Unit Disk

Theorem C.10. Let f(z) be analytic inside the unit disk. Then, if z0 = rejθ, with
0 ≤ r < 1,
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f(z0) =
1

2π

∫ 2π

0

P1,r(θ − ω)f(ejω)dω (C.8.17)

where P1,r(x) is the Poisson kernel defined by

Pρ,r(x)
4
=

ρ2 − r2

ρ2 − 2rρ cos(x) + r2
0 ≤ r < ρ, x ∈ < (C.8.18)

Proof

Consider the unit circle C. Then, using Theorem C.8, we have that

f(z0) =
1

2πj

∮

C

f(z)

z − z0
dz (C.8.19)

Define

z1
4
=

1

r
ejθ (C.8.20)

Because z1 is outside the region encircled by C, the application of Theorem C.8
yields

0 =
1

2πj

∮

C

f(z)

z − z1
dz (C.8.21)

Subtracting (C.8.21 ) from (C.8.19 ) and changing the variable of integration,
we obtain

f(z0) =
1

2π

∫ 2π

0

f(ejω)ejω

[

1

ejω − rejθ
−

r

rejω − ejθ

]

dω (C.8.22)

from which the result follows.
222

Consider now a function g(z) which is analytic outside the unit disk. We can
then define a function f(z) such that

f(z)
4
= g

(

1

z

)

(C.8.23)
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Assume that one is interested in obtaining an expression for g(ζ0), where ζ0 =

rejθ , r > 1. The problem is then to obtain an expression for f
(

1
ζ0

)

. Thus, if we

define z0
4
= 1

ζ0

= 1
r
e−jθ, we have, on applying Theorem C.10, that

g(ζ0) =
1

2π

∫ 2π

0

P1, 1

r
(−θ − ω)g(e−jω)dω (C.8.24)

where

P1, 1

r
(−θ − ω) =

r2 − 1

r2 − 2rcos(θ + ω) + 1
(C.8.25)

If, finally, we make the change in the integration variable ω = −ν, the following
result is obtained.

g(rejθ) =
1

2π

∫ 2π

0

r2 − 1

r2 − 2rcos(θ − ν) + 1
g(ejν)dν (C.8.26)

Thus, Poisson’s integral for the unit disk can also be applied to functions of a
complex variable which are analytic outside the unit circle.

C.8.4 Poisson–Jensen Formula for the Unit Disk

Lemma C.2. Consider a function g(z) having the following properties:

(i) g(z) is analytic on the closed unit disk;

(ii) g(z) does not vanish on the unit circle;

(iii) g(z) has zeros in the open unit disk, located at ᾱ1, ᾱ2, . . . , ᾱn̄.

Consider also a point z0 = rejθ such that r < 1; then

ln |g(z0)| =

n̄
∑

i=1

ln

∣

∣

∣

∣

z0 − ᾱi

1− ᾱ∗i z0

∣

∣

∣

∣

+
1

2π

∫ 2π

0

P1,r(θ − ω) ln |g(ejω)|dω (C.8.27)

Proof

Let

g̃(z)
4
= g(z)

n
∏

i=1

1− ᾱ∗i z

z − ᾱi

(C.8.28)
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Then ln g̃(z) is analytic on the closed unit disk. If we now apply Theorem C.10
to ln g̃(z), we obtain

ln g̃(z0) = ln g(z0) +
n

∑

i=1

ln

(

1− ᾱ∗i z0

z0 − ᾱi

)

=
1

2π

∫ 2π

0

P1,r(θ − ω) ln g̃(ejω)dω

(C.8.29)

We also recall that, if x is any complex number, then ln x = ln|x|+ j∠x. Thus
the result follows upon equating real parts in the equation above and noting that

ln
∣

∣g̃(ejω)
∣

∣ = ln
∣

∣g(ejω)
∣

∣ (C.8.30)

222

Theorem C.11 (Jensen’s formula for the unit disk). Let f(z) and g(z) be an-
alytic functions on the unit disk. Assume that the zeros of f(z) and g(z) on the unit
disk are ᾱ1, ᾱ2, . . . , ᾱn̄ and β̄1, β̄2, . . . , β̄m̄ respectively, where none of these zeros
lie on the unit circle.

If

h(z)
4
= zλ f(z)

g(z)
λ ∈ < (C.8.31)

then

1

2π

∫ 2π

0

ln |h(ejω)|dω = ln

∣

∣

∣

∣

f(0)

g(0)

∣

∣

∣

∣

+ ln
|β̄1β̄2 . . . β̄m̄|

|ᾱ1ᾱ2 . . . ᾱn̄|
(C.8.32)

Proof

We first note that ln |h(z)| = λ ln |z| + ln |f(z)| − ln |g(z)|. We then apply the
Poisson–Jensen formula to f(z) and g(z) at z0 = 0 to obtain

P1,r(x) = P1,0(x) = 1; ln

∣

∣

∣

∣

z0 − ᾱi

1− ᾱ∗i z0

∣

∣

∣

∣

= ln |ᾱi|; ln

∣

∣

∣

∣

z0 − β̄i

1− β̄∗i z0

∣

∣

∣

∣

= ln |β̄i|

(C.8.33)

We thus have that

ln |f(0)| =

n
∑

i=1

ln |ᾱi| −
1

2π

∫ 2π

0

ln |f(ejω)|dω (C.8.34)

ln |g(0)| =

n
∑

i=1

ln |ᾱi| −
1

2π

∫ 2π

0

ln |g(ejω)|dω (C.8.35)
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The result follows upon subtracting equation (C.8.35) from (C.8.34), and noting
that

λ

2π

∫ 2π

0

ln
∣

∣ejω
∣

∣ dω = 0 (C.8.36)

222

Remark C.3. Further insights can be obtained from equation (C.8.32) if we as-
sume that, in (C.8.31), f(z) and g(z) are polynomials;

f(z) = Kf

n
∏

i=1

(z − αi) (C.8.37)

g(z) =

n
∏

i=1

(z − βi) (C.8.38)

then
∣

∣

∣

∣

f(0)

g(0)

∣

∣

∣

∣

= |Kf |

∣

∣

∣

∣

∏n
i=1 αi

∏m
i=1 βi

∣

∣

∣

∣

(C.8.39)

Thus, α1, α2, . . . αn and β1, β2, . . . βm are all the zeros and all the poles of h(z),
respectively, that have nonzero magnitude.

This allows equation (C.8.32) to be rewritten as

1

2π

∫ 2π

0

ln |h(ejω)|dω = ln |Kf |+ ln
|α′1α

′
2 . . . α′nu|

|β′1β
′
2 . . . β′mu|

(C.8.40)

where α′1, α
′
2, . . . α

′
nu and β′1, β

′
2, . . . β

′
mu are the zeros and the poles of h(z), respec-

tively, that lie outside the unit circle .
222
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C.9 Application of the Poisson–Jensen Formula to Certain Ratio-

nal Functions

Consider the biproper rational function h̄(z) given by

h̄(z) = zλ̄ f̄(z)

ḡ(z)
(C.9.1)

λ̄ is a integer number, and f̄(z) and ḡ(z) are polynomials of degrees mf and mg ,
respectively. Then, due to the biproperness of h̄(z), we have that λ̄ + mf = mg.

Further assume that

(i) ḡ(z) has no zeros outside the open unit disk,

(ii) f̄(z) does not vanish on the unit circle, and

(iii) f̄(z) vanishes outside the unit disk at β1, β2, . . . , βm.

Define

h(z) =
f(z)

g(z)

4
= h̄

(

1

z

)

(C.9.2)

where f(z) and g(z) are polynomials.
Then it follows that

(i) g(z) has no zeros in the closed unit disk;

(ii) f(z) does not vanish on the unit circle;

(iii) f(z) vanishes in the open unit disk at β̄1, β̄2, . . . , β̄m, where β̄i = β−1
i for

i = 1, 2, . . . , β̄m;

(iv) h(z) is analytic in the closed unit disk;

(v) h(z) does not vanish on the unit circle;

(vi) h(z) has zeros in the open unit disk, located at β̄1, β̄2, . . . , β̄m.

We then have the following result

Lemma C.3. Consider the function h(z) defined in (C.9.2) and a point z0 = rejθ

such that r < 1; then

ln |h(z0)| =
m̄

∑

i=1

ln

∣

∣

∣

∣

z0 − β̄i

1− β̄∗i z0

∣

∣

∣

∣

+
1

2π

∫ 2π

0

P1,r(θ − ω) ln |h(ejω)|dω (C.9.3)

where P1,r is the Poisson kernel defined in (C.8.18).
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Proof

This follows from a straightforward application of Lemma C.2.
222
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C.10 Bode’s Theorems

We will next review some fundamental results due to Bode.

Theorem C.12 (Bode integral in the half plane). Let l(z) be a proper real,
rational function of relative degree nr. Define

g(z)
4
= (1 + l(z))−1 (C.10.1)

and assume that g(z) has neither poles nor zeros in the closed RHP. Then

∫ ∞

0

ln |g(jω)|dω =

{

0 for nr > 1

−κπ
2 for nr = 1 where κ

4
= limz→∞ zl(z)

(C.10.2)

Proof

Because ln g(z) is analytic in the closed RHP,

∮

C

ln g(z)dz = 0 (C.10.3)

where C = Ci ∪ C∞ is the contour defined in Figure C.4.
Then

∮

C

ln g(z)dz = j

∫ ∞

−∞

ln g(jω)dω −

∫

C∞

ln(1 + l(z))dz (C.10.4)

For the first integral on the right-hand side of equation (C.10.4), we use the
conjugate symmetry of g(z) to obtain

∫ ∞

−∞

ln g(jω)dω = 2

∫ ∞

0

ln |g(jω)|dω (C.10.5)

For the second integral, we notice that, on C∞, l(z) can be approximated by

a

znr
(C.10.6)

The result follows upon using example C.7 and noticing that a = κ for nr = 1.
222

Remark C.4. If g(z) = (1 + e−zτ l(z))
−1

for τ > 0, then result (C.10.9) becomes
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∫ ∞

0

ln |g(jω)|dω = 0 ∀nr > 0 (C.10.7)

The proof of (C.10.7) follows along the same lines as those of Theorem C.12
and by using the result in example C.8.

Theorem C.13 (Modified Bode integral). Let l(z) be a proper real, rational
function of relative degree nr. Define

g(z)
4
= (1 + l(z))−1 (C.10.8)

Assume that g(z) is analytic in the closed RHP and that it has q zeros in the open
RHP, located at ζ1, ζ2, . . . , ζq with <(ζi) > 0. Then

∫ ∞

0

ln |g(jω)|dω =







π
∑q

i=1 ζi for nr > 1

−κπ
2 + π

∑q
i=1 ζi for nr = 1 where κ

4
= limz→∞ zl(z)

(C.10.9)

Proof

We first notice that ln g(z) is no longer analytic on the RHP. We then define

g̃(z)
4
= g(z)

q
∏

i=1

z + ζi

z − ζi

(C.10.10)

Thus, ln g̃(z) is analytic in the closed RHP. We can then apply Cauchy’s integral
in the contour C described in Figure C.4 to obtain

∮

C

ln g̃(z)dz = 0 =

∮

C

ln g(z)dz +

q
∑

i=1

∮

C

ln
z + ζi

z − ζi

dz (C.10.11)

The first integral on the right-hand side can be expressed as

∮

C

ln g(z)dz = 2j

∫ ∞

0

ln |g(jω)|dω +

∫

C∞

ln g(z)dz (C.10.12)

where, by using example C.7.

∫

C∞

ln g(z)dz =

{

0 for nr > 1

jκπ for nr = 1 where κ
4
= limz→∞ zl(z)

(C.10.13)
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The second integral on the right-hand side of equation (C.10.11) can be com-
puted as follows:

∮

C

ln
z + ζi

z − ζi

dz = j

∫ ∞

−∞

ln
jω + ζi

jω − ζi

dω +

∫

C∞

ln
z + ζi

z − ζi

dz (C.10.14)

We note that the first integral on the right-hand side is zero, and by using
example C.9, the second integral is equal to −2jπζi. Thus, the result follows.

222

Remark C.5. Note that g(z) is a real function of z, so

q
∑

i=1

ζi =

q
∑

i=1

<{ζi} (C.10.15)

222

Remark C.6. If g(z) = (1 + e−zτ l(z))
−1

for τ > 0, then the result (C.10.9) be-
comes

∫ ∞

0

ln |g(jω)|dω = π

q
∑

i=1

<{ζi} ∀nr > 0 (C.10.16)

The proof of (C.10.16) follows along the same lines as those of Theorem C.13
and by using the result in example C.8.

Remark C.7. The Poisson, Jensen, and Bode formulae assume that a key function
is analytic, not only inside a domain D, but also on its border C. Sometimes, there
may exist singularities on C. These can be dealt with by using an infinitesimal
circular indentation in C, constructed so as to leave the singularity outside D. For
the functions of interest to us, the integral along the indentation vanishes. This is
illustrated in example C.6 for a logarithmic function, when D is the right-half plane
and there is a singularity at the origin.

222


